Quantum Automorphism Groups of Small Metric Spaces

نویسنده

  • TEODOR BANICA
چکیده

To any finite metric space X we associate the universal Hopf C-algebra H coacting on X. We prove that spaces X having at most 7 points fall into one of the following classes: (1) the coaction of H is not transitive; (2) H is the algebra of functions on the automorphism group of X; (3) X is a simplex and H corresponds to a Temperley-Lieb algebra; (4) X is a product of simplices and H corresponds to a Fuss-Catalan algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

Quantum Symmetry Groups of Finite Spaces

We determine the quantum automorphism groups of finite spaces. These are compact matrix quantum groups in the sense of Woronowicz.

متن کامل

Random Orderings and Unique Ergodicity of Automorphism Groups

We show that the only random orderings of finite graphs that are invariant under isomorphism and induced subgraph are the uniform random orderings. We show how this implies the unique ergodicity of the automorphism group of the random graph. We give similar theorems for other structures, including, for example, metric spaces. These give the first examples of uniquely ergodic groups, other than ...

متن کامل

On the dynamics of isometries

We provide an analysis of the dynamics of isometries and semicontractions of metric spaces. Certain subsets of the boundary at infinity play a fundamental role and are identified completely for the standard boundaries of CAT(0)– spaces, Gromov hyperbolic spaces, Hilbert geometries, certain pseudoconvex domains, and partially for Thurston’s boundary of Teichmüller spaces. We present several rath...

متن کامل

Elements of finite order in automorphism groups of homogeneous structures

We study properties of the automorphism groups of Fräıssé limits of classes with certain strong amalgamation properties, including classes with the free amalgamation property and classes of metric spaces. We discuss conditions on a Fräıssé class K that imply that the automorphism group GK of its limit admits generic elements of order n for all n and show that, for many such K, any element of GK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008